فرستنده و گیرنده راداری

-1 مقدمه:
رادار وسیله ای است برای جمع آوری اطلاعات از اشیا یا هدف های محیط به ویژه در فواصل دورکه در آن از تجزیه و تحلیل امواج الکترومغناطیس برگشتی، فاصله، ابعاد، سرعت و بسیاری از خواص هدف موردنظر تعیین می شود . بطور کلی رادار شامل یک فرستنده و یک گیرنده و یک یا چند آنتن است . فرستنده قادر است که توان زیادی را توسط آنتن ارسال دارد و گیرنده تا حد امکان انرژی برگشتی از هدف را جمع می کند، از آنجا که بیشتر رادارها انرژی فرستنده را به صورت پالس ارسال می کنند، بنابراین استفاده از یک آنتن هم برای فرستنده و هم برای گیرنده توسط یک تقسیم ک ننده زمان امکان پذیر خواهد بود. از موارد مهم در طراحی رادار نوع آنتن و پترن تشعشعی آن می باشد . آنتن های رادار را معمولا برای مرور نواحی بخصوص از فضا طراحی می کنند که مسیر مرور بستگی به کاربرد آن دارد، آنتن ها در بیشتر رادارها منعکس کننده های سهموی با تغذیه شیپور ی یا دو قطبی می باشند. البته در برخی موارد ناچار به استفاده از رادارهایی با آنتن آرایه فازی می باشیم. رادارهای ،MTI ،CW برای تامین برد راداری مطلوب باید فرستنده از توان کافی برخوردار باشد . رادارهای آرایه فازی و ... هر یک ویژگیهای خاصی دارند که بر فرستنده و روش عملکرد آن اثر می گذارد . از مباحثی که باید در طراحی رادار و انتخاب فرستنده مورد توجه قرار گیرد، برد ، ثابت یا متحرك بودن ، وزن، اندازه ، حفاظت و ولتاژ بالا، شرایط مدولاسیون و حتی مسئله خنک کردن آن است. x در برابر اشعه کار گیرنده رادار، آشکار سازی پی امهای اکوی مورد نظر در حضور نویز ، تداخل یا اکوهای ناخواسته (کلاتر ) می باشد . گیرنده باید پیامهای مطلوب را از نامطلوب جدا نموده و پیامهای مطلوب را تا حدی که اطلاعات هدف برای کاربر قابل نمایش بوده و یا د ر داده پرداز خودکار قابل استفاده باشد، تقویت نماید . ساختار گیرنده رادار نه تنها به شکل موج آشکار شونده بستگی دارد، بلکه به ماهیت اکوهای کلاتر، تداخل و نویز که با پیامهای اکو مخلوط می شوند هم بستگی دارد . نویز ممکن است از طریق پایانه آنتن، به همراه پیام مورد نظر، وارد گیرنده خروجی، گیرن ده S/N شود و یا ممکن است در داخل خود گیرنده ایجاد گردد. برای به حداکثر رساندن نسبت و یا معادل آن باشد. بدیهی است که گیرنده باید طوری (Matched Filter) باید دارای یک فیلتر انطباقی طراحی شود که کمترین نویز داخلی را بخصوص در طبقات ورودی که پیام های مطلوب در ضعیف ترین حالت خود هستند، ایجاد نماید.
در سیستم های راداری از گیرنده های سوپر هترودین، بدلیل حساسیت خوب، بهره زیاد، قابلیت گزینش فرکانس و ضریب اطمینان خوب تقریبا همیشه استفاده می شود و هیچ نوع گیرنده ای قابل رقابت با این نوع گیرنده ها نیستند.
-2 اصول رادار:
در واقع اختراع رادار از یک پد یده فیزیکی و بسیار طبیعی به نام انعکاس ناشی شده است . همه ما بارها بازگشت صدا را در مقابل صخره های عظیم تجربه کرده ایم. امواج رادیویی و الکترومغناطیس نیز قابلیت انعکاس و بازتاب دارند و رادار بر اساس همین خاصیت ساده بوجود آمد . به کمک امواج الکترومغناطیسی نه تنها از وجود اجسام در فاصله دور باخبر می شویم، بلکه بطور دقیق می توان تعیین کرد ساکن هستند یا از ما دور و یا به ما نزدیک می شوند. حتی سرعت جسم نیز بخوبی قابل محاسبه است . امواج برگشتی توسط دستگاههای خاص در مبدا تقویت شده و از روی مدت زمان رفت و برگشت این امواج، فاصله بین جسم و رادار اندازه گیری می شود. می توان گفت رادار یک سیستم الکترومغناطیسی است که برای تشخیص و تعیین موقعیت هدفها بکار می رود. این دستگاه بر اساس ارس ال یک شکل موج خاص به طرف هدف و بررسی شکل موج برگشتی کار می کند . با رادار می توان درون محیطی را که برای چشم غیر قابل نفوذ است دید، مثل تاریکی، باران ، مه ، برف ، غبار و غیره، اما مهمترین مزیت رادار، توانائی آن در تعیین فاصله یا موقعیت و حتی ماهیت هدف می باشد. ساده ترین رادارها در حقیقت از یک فرستنده و یک گیرنده رادیویی بوجود آمدند . در ابتدا این وسیله فقط قادر بود وجود شیء را اعلان کند و به هیچ وجه توانایی تشخیص اندازه و ویژه گی های دیگر آن را نداشت. یک رادار ساده شامل آنتن ، فرستنده، گیرنده و عنصر آشکار ساز انرژی برگشتی بصورت قابل شناسایی می باشد . آنتن فرستنده پرتوهای الکترومغناطیسی تولید شده توسط نوسا نگر را دریافت و ارسال می دارد . معمولی ترین شکل موج در رادارها یک قطار از پالسهای باریک مستطیلی است که موج حامل سینوسی را مدوله می کند. اکنون رادارها در روی زمین و در هوا، دریا و فضا بکار گرفته شده اند، رادارهای زمینی بیشتر برای آشکار سازی، تعیین موقعیت و ر دیابی هواپیم ا و یا سایر اهداف هوایی مورد استفاده قرار می گیرند . رادارهای دریایی بعنوان یک وسیله کمکی به کشتیرانی و وسیله ای مطمئن برای تعیین موقعیت شناورها ، خطوط ساحل و دیگر کشتیها و همچنین دیدن هواپیم اها بکار می روند . رادارهای هوایی برای آشکار سازی هواپی م ا، کشتی و وس ایل نقلیه زمینی و یا نقشه برداری زمین ، اجتناب از طوفان جلوگیری از برخورد با زمین و یا ناوبری می توانند مورد استفاده قرار گیرند . در فضا ،رادار به هدایت اجسام پرنده کمک می کند و برای ارتباط راه دور با زمین و دریا بکار می رود.
در رادارهای زمینی قضی ه خیلی پیچیده تر از رادارهای هوایی است، هنگامی که یک رادار پلیس به ارسال پالس موج رادیویی می پردازد بخاطر وجود اجسام بسیار در سر راهش مانند نرده ها، پلها، تپه ها و ساختمانها اکوهای بسیاری را دریافت می کن د، اما از آنجایی که تمام این اجسام به جزء خودروی مورد نظر ثابت هستند ، سیستم رادار خودروهای پلیس، باید از میان امواج منعکس شده، فقط آنهایی را انتخاب کند که در آنها پدیده داپلر قابل شناسایی باشد، آن هم به اندازه ای که جسم متحرك اضافه سرعت داشته باشد در ضمن آنتن این رادارها باید دهانه تنگی داشته باشد ، چرا ک ه فقط بر روی یک خودرو تنظیم می شوند . البته امروزه پلیس در برخی کشورها از جمله کشور خودمان از تکنولوژی لیزر برای تعیین سرعت خودروها در بزرگراهها استفاده می کند. این تکنولوژی به نام لیدار شناخته می شود و در این مدل بجای امواج رادیویی از لیز ر استفاده شده است.
-3 فرستنده های راداری:
اولین رادارهایی که قبل از جنگ جهانی د وم با موفقیت آماده بهره برداری شدند، از لامپ خلا معمولی دارای استفاده می کردند. نوسان ساز مگنترون، که باعث پیدایش و توسعه ،VHF شبکه کنترل و مناسب کار در باند رادارهای مایکروویو در زمان جنگ جهانی دو م شد، یکی از پر مصرف ترین و کاربردی ترین فرستنده های راداری بود همچنین تقویت کننده های کلیسترون امکان کار با شکل موج ه ای پیچیده تر از رشته پالسهای معمولی را فراهم کرد.
که از خانواده مگنترون بود و انواع گوناگونی دارد ساخته (CFA) در دهه 1960 تقویت کننده میدان متقاطع شد. ویژگیهای عمومی آنها باند وسیع، بهره نسبتا کم و کوچکی ابعاد آن می باشد و بیش تر شبیه مگنترون است تا کلیسترون همچنین ابزارهای نیمه هادی از قبیل ترانزیستورها و دیودهای بهمنی نیز به عنوان نوعی فرستنده به کار می روند اما توان هر یک به تنهایی کم است. برای تامین برد راداری مطلوب باید فرستنده از توان کافی برخوردار باشد، ام ا در عین حال سایر شرایط لازم رادارهای آرایه فازی و ... هر یک ویژگیهای خاصی دارند که بر ،MTI ،CW را هم باید بر آورده نماید . رادارهای فرستنده و روش عملکرد آن اثر می گذارد . از مباحثی که باید در طراحی رادار و انتخاب فرستنده مورد توجه و ولتاژ بالا ، شرایط مدولاس یون و x قرار گیرد، برد ، ثابت یا متحرك بودن ، وزن، اندازه ، حفاظت در برابر اشعه حتی مسئله خنک کردن آن است . البته از آنجا که فرستنده بخش بزرگی از رادار می باشد چگونگی انتخاب آن بسیار حائز اهمیت است. با توجه به معادله کلاسیک رادار دیدیم که اگر بخواهیم به 2 برابر برد موجود برسیم باید توان ارسالی رادار را 16 برابر کنیم ولی افزایش برد با این روش بسیار پر هزینه است. فرستنده ها بسیار پیچیده تر از ی ک لامپ هستند و شامل تقویت کننده های راه انداز ، تقویت کننده های توان بالا ، منبع تغذیه برای تولید جریان و ولتاژ
in out P GP A p 2 a R4 = مورد نیاز لامپ، مدولاتور، خنک کننده لامپ، مبدل دما، وسایل ایمنی برای تخلیه جرقه ها، کلید های ایمنی، می باشد. راندمانی که برای بیشتر لامپها تعریف x وسایل نشان دهنده وضعیت سیستم و محافظی در برابر اشعه ورودی که برای DC خروجی لامپ به توان RF می باشد که عبارتست از توان RF می شود ، راندمان تبدیل برقراری جریان الکترونها لازم است . البته مهندسین سیستم بیشتر، راندمان کلی فرستنده را مورد توجه قرار می دهند. دو ساختار اصلی برای رادارها وجود دارد یکی نوسان س از توان بالای خود تحریک از جنس مگنترون و دیگری یک تقویت کننده توان بالا ، که خود شامل یک نوسان ساز پایدار و کم توان است و خروجی آن پس از یک یا چند مرحله تقویت به میزان مورد نیاز تقویت می شود. فرستنده هایی که از تقویت کننده های توان بهره می گیرند عموماً دارای توان بیشتری بوده و نیز حجیم ترند ، در عین حال دارای پایداری بیشتری نیز می باشند و سایر رادارهای داپلر حایز اهمیت است. MTI که این امر برای رادار
مگنترون نوسان سازی است که بیش از هر لامپ دیگری در سیستم های راداری کاربرد دارد . مگنترون کلاسیک دارای وزن و اند ازه مناسب، قیمت کم و بازدهی زیاد می باشد . ولتاژ کاری آن به قدری کم است که آن نیز قابلیت اعتماد، طول عمر (دوام) و پایداری (coaxial) نمی شود و نوع هم محور x باعث تولید اشعه بیشتری نسبت به نوع کلاسیک آن دارد و اما تقویت کننده های کلیسترون توان بالا، بهره زیاد ، پایداری و و تراکم پالس را در اختیار طراح قرار می دهد و د ر رادارهای توان بالا MTI بازدهی خوب و لازم برای رادارهای مشابه تقویت های کلیسترون است با این تفاوت که وسعت کاری و TWT مورد توجه قرار می گیرد . لامپ هم از خانواده CFA پهنای باند آن بسیار وسیع تر می باشد و بهره کمتری دار د. تقویت کننده میدان متقاطع یا از پهنای باند وسیعی برخوردار است اما بهره آن نسبتا کمتر است، بنابراین در یک TWT مگنترون بوده و مانند زنجیره تقویت، بیش از یک مرحله تقویت لازم دارد. نوسان ساز مگنترون: این نوسان ساز توان بالا در سال 1939 اخت راع شد و بیش از هر وسیله دیگری در پیدایش و توسعه رادارهای مایکروویو در زمان جنگ جهانی دوم نقش داشت و از آنجا که میدان الکتریکی آن بر یک میدان مغناطیسی ساکن عمود است، یکی از انواع ابزارهای میدان متقاطع محسوب می شود . این کاربرد حفره های تشدید کننده در ساخت ار مگنترون بود که امکان تولید یک نوسان ساز مایکروویوی کارآمد و با توان و بازدهی زیاد را فراهم کرد.
مگنترون دارای مجموعه ای از حفره ها و شیارهاست که مانند مدارهای تشدید عمل می کنند و کاری مورد استفاده در فرکانس کمتر ) انجام می دهند . حفره ه ا، معادل سیم پیچ های ) LC مشابه مدارهای تشدید و L نامیده می شود) هر یک از p القاگر، و شیار ها معادل خازن می باشند . در حالت کاری مطلوب ( که حالت ها با هم موازی هستند و فرک انس مگنترون تقریبا برابر فرکانس هر یک از تشدیدکننده ها است . کاتد باید از C جنس سختی باشد تا بتواند در مقابل گرما و تجزیه ناشی از برخوردهای الکترونی (بمباران معکوس الکترونی ) مقاومت کند . بمباران معکوس الکترونی موجب افزایش دمای کاتد شده و گسیل الکترونهای ثانویه را به دنبال دارد به همین دلیل است که پس از شروع نوسان، برق سیم گرمساز کم و یا قطع می شود . تقاطع میدانهای الکتریکی و مغناطیسی باعث می شود که الکترونها تقریبا به محض گسیل شدن از کاتد به طور کامل دسته بین حفره های مجاور 180 RF بندی شوند . بهترین حالت کاری مگنترون حالتی است که در آن فاز میدان گویند. p درجه اختلاف فاز داشته باشند که به آن حالت هستند، یعنی می توانند با دو فرکانس (degenerate) از نوع چند فرکانسی p تمام حالتها به جز حالت مختلف متناسب با چرخش نمودار ایستا و عوض شدن جای گره و شکم ، نوسان کنند. بنابراین در یک مگنترون فرکانس وج ود دارد که مگنترون می تواند در هر یک از این حالتها نوسان کند و این مسئله (n- حفره ( 1 n با p ریشه مشکل پایداری است ولی مگنترون باید فقط برای یک حالت کاری غالب طراحی شود که معمولا حالت را ترجیح می دهند زیرا به آسانی از سایر حالتها جدا می شود. در حفره مرکزی ذخیره می شود می توان با وارد کردن یک محور متحرك (مانند RF چون بیشتر انرژی پیستون) در حفره به طوریکه تماسی با جدار آن نداشته باشد، مگنترون را با اطمینان در یک باند وسیع تنظیم نمود. فرکانس مگنترون معمولی با وارد کردن این عنصر تنظیمی که میزان القاگری (اندوکتانس) مدار تشدید را تغییر می دهد قابل تغییر است . لازم نیست که حرکت عناصر تنظیم زیاد باشد بلکه حرکت کسری از اینچ برای تغییر 5 تا 10 درصدی فرکانس کار کافی است . در مگنترونهای معمولی، تغییر فرکانس از طریق تغییر ظرفیت خازنی نیز امکان پذیر است . در رادارهای ب ا تغییر سریع فرکانس، فرکانس مگنترون ممکن است پالس به پالس و به گونه ای تغییر کند که تمام باند تنظیمی را بپوشاند . چنین رادارهایی ممکن است برای تسهیل در کشف هدفهای دارای سطح مقطع متغیر و کاهش اثر لرزش هدف به کار روند . این تنظیم سریع در یک باند باریک به منظور ایجاد تغییرات فوری فرکانس را گاهی تنظیم موتوری یا تنظیم دید می نامند. تقویت کننده کلیسترون:
کلیسترون نمونه ای از لامپهای دارای پرتو خطی می باشد، مشخصه بارز لامپهای دارای پرتو خطی آن است که الکترونهای صادر شده از کاتد، به صورت یک پرتو استوانه ای و بلند درمی آیند که قبل از رسیدن به ناحیه تمام انرژی پتانسیل میدان الکتریکی را دریافت می کند . لامپهای کم قدرت ممکن است برای ،RF واکنش جفت کردن پیام با پرتو در دهانه ورودی خود دارای یک شبکه باشند در حالیکه در لامپهای پر قدرت معمولا در دهانه ورودی شبکه ای وجود ندارد ز یرا شبکه نمی تواند قدرت زیاد را تحمل کند. در مورد پهنای باند باید گفت فرکانس این نوع نوسان ساز به وسیله حفره های تشدید آن تعیین می شود که اگر تمام حفره ها برای یک فرکانس تنظیم شده باشند، بهره لامپ زیاد، اما پهنای باند آن کم خواهد بود . به این روش، تنظیم هماهنگ می چند IF گویند. افزایش پهنای باند کلیسترونهای چند حفره ای به گونه ای مشابه افزایش پهنای باند نوسان ساز مرحله ای است یعنی با تنظیم هر یک از حفره ها به یک فرکانس متفاوت بدست می آید که به آن تنظیم ردیفی گویند. بدین ترتیب پهنای باند گسترش خواهد یافت.
یا لامپ موج سیار: TWT
هم یکی دیگر از انواع لامپهای با پرتو خطی می باشد و از این لحاظ که واکنش بین پرتو الکترونی و TWT که TWT رخ می دهد با کلیسترون تفاوت دارد . ویژگی خاص TWT در سرتاسر فضای انتشار RF میدان مورد توجه مهندسین قرار دارد، پهنای باند نسبتا وسیع آن است ، زیرا در کاربری هایی که به تفکیک فاصله ای خوب نیاز باشد و یا اجتناب از اختلالهای عمومی و یا تداخل بین رادارهای مجاور مورد توجه باشد ، استفاده از مشابه کلیسترون است، اما معمولا مقادیر آنها اندکی کم تر TWT باند وسیع ضرورت دارد . بهره، بازدهی و توان از کلیسترون با همان ابعاد می باشد . در این تقویت کننده ها یک میدان مغناطیسی محوری هم وجود دارد که RF خود را به میدان DC مانند کلیسترون، تمرکز پرتو الکترونی را حفظ می کند ، پس از اینکه الکترونها انرژی تحویل دادند، به وسیله الکترودها جمع آوری می شوند. کلیسترون می تواند د ر گستره نسبتا وسیعی از ولتاژ پرتو کار کند بدون اینکه تغییر عمده ای در بهره آن های پرقدرت در صورتیکه ولتاژ پرتو آنها کاهش یابد دچار نوسان می شوند TWT ایجاد شود در حالیکه بنابراین هر چه پهنای باند لامپ بیشتر باشد، قدرت تحمل پرتو آن در برابر تغییرات ولتاژ هم بیشتر خواهد بود . ها علاوه TWT . هم مشابه نیازهای کلیسترون است اما مشکلتر از آن می باشد TWT نیازهای حفاظتی لامپ بر اینکه بعنوان یک لامپ توان بالا در سیستم های راداری پرقدرت مورد استفاده قرار می گیرد، در سطوح توان پایین تر نیز بعنوان راه انداز لامپ های پرقدرت (از قبیل تقویت کننده های میدان متقاطع )، و در رادارهای آرایه فازی که برای افزایش قدرت از تعداد زیادی لامپ استفاده می کنند، هم به کار می روند.
:CFA تقویت کننده های میدان متقاطع یا

هم مانند مگنترون ، وجود میدانهای الکتریکی و مغناطیسی عمود بر CFA مشخصه بارز تقویت کننده های هم می باشد . اینگونه لامپ ها، بازدهی زیاد حدود 40 تا 60 درصد دارند، ولتاژ نسبتا کم، اندازه کوچک و وزن کم دارند و برای استفاده در سیستم های سیار، مفید هستند. این تقویت کننده ها، طیف وسیع، توان اوج بالا و پایداری فاز ی خوبی دارند اما بهره آنها چندان بالا نمی باشد البته برای دستیابی به قدرت بیشتر می توان را به طور موازی در مدار قرار داد . این لامپها می تواند به عنوان تقویت کننده بعد از مگنترون CFA تعدادی بعنوان بخش راه انداز و TWT و CFA بعنوان بخش تقویت کننده توان نوسان ساز یا به همراه سایر لامپهای یا بعنوان فرستنده مجزا در رادارهای آرایه فازی پرتوان مورد استفاده قرار گیر ند. تقویت کننده میدان متقاطع از اصول واکنش الکترونی مگنترون بهره می گیرند، بنابراین همان ویژگی های مگنترون را دار است و (CFA) TWT از جوانبی نیز مشابه CFA . از نظر ظاهری هم مشابه مگنترون هستند ،CFA حتی بسیاری از لامپهای هستند زیرا تقابل الکترونی در هردوی آنها به رو ش موج متحرك (سیار) صورت می گیرد . اجزای تشکیل دهنده انواع این تقویت کننده ها عموماً عبارتند از : ساختار کاهنده سرعت موج، کاتد، آند و دریچه های ورودی و خروجی الکترون.
فرستنده های نیمه هادی:
دو گروه نیمه هادی وجود دارند که در سیستم های راداری بعنوان منابع بالقوه انرژی مایکروویو تلقی می شوند یکی تقویت کننده های ترانزیستوری و دیگری دیودهای مایکروویو یک قطبی ، که بعنوان نوسان ساز و یا تقویت کننده با مقاومت منفی، عمل می کنند . در گذشته ترانزیستورهای دو قطبی سیلیسی در فرکانسهای و پایین تر) مورد استفاده قرار می گرفتند و دیودها در فرکانسهای بالاتر به کار می L پایین مایکروویو (باند از جنس گالیوم – آرسنید نیز در فرکانسهای بالاتر استفاده می شدند، از ویژگیهای FET رفتند. ترانزیستورهای این دو نوع مولد امواج مایکروویو ترانزیستوری و دیودی، قدرت کم آنها در مقایسه با لامپهای پرتوان (قدرتی ) ذکر شده می باشد . به دلیل قدرت کم و سایر ویژگیهای ابزار نیمه هادی، کاربرد آنها در سیستم های راداری با کاربرد لامپهای پرقدرت متفاوت است . گرچه در زمینه ابزار های نیمه هادی، پیشرفتهای چشمگیری حاصل شده و آنها از ویژگیهایی متفاوت با سایر منابع مایکروویو برخوردارند، اما میزان کاربری آنها در سیستمهای راداری همچنان محدود است.
ترانزیستورهای مایکروویو:
از یک ترانزیستور مایکروویو بدست می آید، مم کن است به دهها وات L مقدار انرژی پیوسته ای که در باند برسد، برخلاف لامپهای خلا، توان اوجی که ترانزیستورها، با پ السهای باریک می توانند ایجاد کنند فقط در حدود دو برابر توان پیوسته آنها می باشد و این امر باعث می شود که ترانزیستورها، با پالسهای پهن و ضریب کاری زیاد، کار کنند ولی در رادارهای تجس سی هوابرد ممکن است پهنای پالس به دهها میکرو ثانیه یا بیشتر هم برسد 0 که خیلی بیشتر از ضریب کار لامپهای مایکروویو است مواجه شویم. این ضریب کاری زیاد، / و با ضریب کاری 1 طراحان سیستم راداری را متقاعد نمود که فرستنده های نیمه هادی نمی توانند جایگزین فرستنده های لامپی گردند و برای استفاده از نیمه هادی ها باید مبانی طراحی سیستم را بطور کلی تغییر داد. به هر حال برای استفاده از نیمه هادی ها در سیستم های راداری، مشکلات زیادی جدا از قیمت نیز وجود دارد، همانطور که اشاره شد فرستنده های نیمه هادی تفاوت چشمگیری با فرستند ه های لامپی دارند . بخش اصلی مولد انرژی نسبتا کوچک است، بنابراین برای کسب انرژی مورد نیاز رادار بخشهای تقویت کننده زیادی باید با هم ترکیب شوند، هر چه فرکانس بالاتر باشد انرژی حاصل از عناصر نیمه هادی کمتر و ترکیب انرژی زیاد PRF بعلت افزایش عناصر مورد نیاز دشوارتر خو اهد بود . رادارهای ترانزیستوری باید پالسهای بلند و یا داشته ب اشند که عموماً هیچکدام برای رادار مطلوب نمی باشد به همین دلیل کاربرد آنها محدود و خاص به می شود، در رادارهای نظامی پالس پهن یک ایراد CW مواردی از قبیل رادارهای پالس داپلر یا رادارهای محسوب می شود زیرا با شروع پالس پهن سیستم های ایجاد نویز و اختلال می توا نن د فرکانس کاری رادار را مشخص نموده و در خلال دوره پالس، بسرعت سیستم ایجاد نویز و اختلال را بر روی فرکانس صحیح تنظیم کنند و ضمنا شناسایی و ردیابی رادار نیز آسان تر می باشد.
مدولاتورها:
کار مدولاتورها روشن و خاموش کردن لامپ فرستنده به منظور تولید شکل موج مورد نظر می باشد، اگر موج ارسالی به صورت پالس باشد، مدولاتور را پالس ساز هم می گویند . هر لامپ توان بالا، ویژگیهای خاص خود را دارد که تعیین کننده نوع مدولاتور مورد نیاز می باشد . مثلا مدولاتور مگنترون باید طوری طراحی شود که و TWT قدرت تحمل تمامی انرژی پالس را داشته باشد و یا از سوی دیگر خواهیم دید که تمام انرژی لامپهای کلیسترون را می توان به وسیله مدولاتورها که فقط بخش کوچکی از کل انرژی پرتو را تحمل می کند قطع و غالبا از نوع کلید کاتدی می باشند CFA وصل نمود . این نوسان ساز ها دارای ک لید آندی هستند ولی لامپهای نیز دارای عملکرد مستقیم هستند یعنی می CFA که به مدولاتور پرقدرت نیاز دارند البته برخی از لامپهای روشن شده و با اعمال یک پالس باریک و کم انرژی به الکترود قطع یا همان خامو ش RF توانند با شروع پالس روشن و خاموش می شوند و به ،RF با شروع و خاتمه پالس CFA شوند، همچنین برخی دیگر از لامپهای مدولاتور نیازی ندارند.
انرژی حاصل از یک منبع ، انرژی در دوره بین پالسی (زمان بین دو پالس )، در یک عنصر ذخیره ساز انرژی ذخیره می گردد . امپدانس شارژ، سرعت تح ویل انرژی به عنصر ذخیره ساز را محدود می کند . در یک زمان بسرعت تخلیه گرد یده و شکل پالس را RF معین، کلید بسته شده و انرژی ذخیره شده از طریق بار یا لامپ عناصر پایه ای یکی
از انواع مدولاتور پالس عنصر ذخیره امپدانس شارژ انرژی منبع انرژی o بار کلید o مسیر دشارژ مسیر شارژ ایجاد می کند . در طول دوره تخلیه بار، امپدانس شارژ از هدر رفتن انرژی موجود در عنصر ذخیره گر جلوگیری می کند.
-4 گیرنده های راداری:
کار گیرنده رادار، آشکار سازی پی امهای اکوی مورد نظر در حضور نویز ، تداخل یا کلاتر می باشد . گیر


منابع :
----------------------
http://maghaleh.net/content-1587.html
1) سیستمهای مخابراتی، ا.ب.کارلسون ترجمه محمد خیام روحانی
2) INTRODUCTION TO RADAR SYSTEMS
Third Edition - by Merrill I.Skolnic
3) ANTENE THEORY AND DESIGN L.Stutzman – Virginia Polytechnic Institute 4) http://www.ewa.ir/ 5) http://www.irandoc.ac.ir/
----------------------

کلمات کلیدی :
----------------------
رادار، فرستنده، مگنترون، گیرنده، سوپرهترودین